Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.609
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 322, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713216

ABSTRACT

Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: • Different types of S. henryi in vitro cultures were compared for the first time. • The S. henryi in vitro culture strong antioxidant potential was determined for the first time. • The polyphenol profiling of different types of S. henryi in vitro cultures was shown.


Subject(s)
Antioxidants , Biflavonoids , Phenols , Plant Extracts , Schisandra , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/chemistry , Chromatography, High Pressure Liquid , Schisandra/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Catechin/chemistry , Catechin/analysis , Catechin/metabolism , Catechin/pharmacology , Bioreactors
2.
BMC Cardiovasc Disord ; 24(1): 231, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679696

ABSTRACT

BACKGROUND: Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined. METHODS: HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP). RESULTS: ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs. CONCLUSION: PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.


Subject(s)
Anti-Inflammatory Agents , Apoptosis , Biflavonoids , Catechin , Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL , NF-kappa B , Oxidative Stress , Proanthocyanidins , Signal Transduction , Humans , Lipoproteins, LDL/toxicity , Catechin/pharmacology , Proanthocyanidins/pharmacology , Oxidative Stress/drug effects , Biflavonoids/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Signal Transduction/drug effects , NF-kappa B/metabolism , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Monocytes/pathology , Antioxidants/pharmacology , THP-1 Cells , Chemotaxis, Leukocyte/drug effects , Reactive Oxygen Species/metabolism , Scavenger Receptors, Class E/metabolism , Scavenger Receptors, Class E/genetics
3.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 453-462, 2024 May 09.
Article in Chinese | MEDLINE | ID: mdl-38636999

ABSTRACT

Objective: To investigate the mechanism of proanthocyanidin (PA) in regulating the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs), and to explore the effects of PA on the expression and nuclear translocation of transcription factor EB (TFEB) and on the autophagy-lysosome pathway. Methods: PDLSCs were divided into control group and PA group, which were subjected to RNA sequencing analysis (RNA Seq) to detect differentially expressed genes. The osteogenic differentiation ability and autophagy level were observed by real-time fluorescence quantitative PCR (RT-qPCR) analysis, alkaline phosphatase (ALP) staining and transmission electron microscope (TEM), respectively. Scratch assay and Transwell assay were used to detect the migration ability of PDLSCs. Lysotracker and immunofluorescence staining were used to detect the biogenesis of lysosomes. The total protein expression of transcription factor EB (TFEB) as well as that in cytoplasm and nucleus were detected by Western blotting. Confocal laser scanning microscope (CLSM) was used to observe the nuclear translocation of TFEB. The PDLSCs were treated with small interfering RNA (siRNA) technology to knock down the expression levels of TFEB gene with or without PA treatment. Western blotting was used to analyze the expressions of autophagy-related proteins Beclin1 and microtubule-associated protein 1 light chain 3 (LC3B), as well as osteogenic-related proteins runt-related transcription factor 2 (RUNX2), ALP, and osteocalcin in PDLSCs. Results: Compared with the control group, the osteogenic-related and autophagy-related genes showed differential expression in PDLSCs after PA treatment (P<0.05). The mRNA expression levels of osteogenic-related genes RUNX2 (2.32±0.15) and collagen type Ⅰ alpha 1 (COL1α1) (1.80±0.18), as well as the autophagy related genes LC3B (1.87±0.08) and Beclin1 (1.63±0.08) were significantly increased in the PA group, compared with the control group (1.01±0.16, 1.00±0.10, 1.00±0.07, 1.00±0.06, respectively, all P<0.01). Compared with the control group, the PA group had higher ALP activity, and more autophagosomes and autophagolysosomes observed by TEM. PA promoted the migration of PDLSCs (P<0.05) and the increased number of lysosomes and the expression of lysosomal associated membrane protein 1 (LAMP1). In the PA group, the relative expression level of total TFEB protein (1.49±0.07) and the nuclear/cytoplasmic expression of TFEB protein (1.52±0.12) were significantly higher than the control group (1.00±0.11, 1.00±0.13, respectively) (t=6.43, P<0.01; t=5.07, P<0.01). The relative nuclear/cytoplasmic fluorescence intensity of TFEB in the PA group (0.79±0.09) was increased compared with the control group (0.11±0.08) (t=8.32, P<0.01). Knocking down TFEB significantly reduced the expression of TFEB (1.00±0.15 vs 0.64±0.04), LAMP1 (1.00±0.10 vs 0.69±0.09), Beclin1 (1.00±0.05 vs 0.60±0.05), and LC3B Ⅱ/Ⅰ (1.00±0.06 vs 0.73±0.07) in PDLSCs (P<0.05, P<0.05, P<0.01, P<0.01). When TFEB gene was knocked down, the expression levels of Beclin1 (1.05±0.11), LC3B Ⅱ/Ⅰ (1.02±0.09), RUNX2 (1.04±0.10), ALP (1.04±0.16), and osteocalcin (1.03±0.15) proteins were significantly decreased in the PA group compared with the pre-knockdown period (1.28±0.03, 1.44±0.11, 1.38±0.11, 1.62±0.11, 1.65±0.17, respectively) (P<0.05, P<0.01, P<0.05, P<0.01, and P<0.01, respectively). Conclusions: PA promotes the osteogenic differentiation of PDLSCs through inducing the expression and nuclear translocation of TFEB and activating the autophagy-lysosome pathway.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Differentiation , Lysosomes , Osteogenesis , Periodontal Ligament , Proanthocyanidins , Stem Cells , Humans , Osteogenesis/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Lysosomes/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Proanthocyanidins/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Alkaline Phosphatase/metabolism , Collagen Type I/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Microtubule-Associated Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 121(18): e2311028121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657052

ABSTRACT

Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.


Subject(s)
Aging , Catechin , Cellular Senescence , Proanthocyanidins , Retina , Animals , Retina/metabolism , Retina/drug effects , Mice , Proanthocyanidins/pharmacology , Proanthocyanidins/metabolism , Aging/drug effects , Aging/metabolism , Cellular Senescence/drug effects , Catechin/pharmacology , Catechin/metabolism , Catechin/chemistry , Biflavonoids/pharmacology , Senotherapeutics/pharmacology , Mice, Inbred C57BL , Humans , Retinal Diseases/drug therapy , Retinal Diseases/metabolism , Retinal Diseases/pathology
5.
Nutrients ; 16(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38613069

ABSTRACT

The present study investigated potential bioactive natural products from the EtOH extract of Salix chaenomeloides twigs using column chromatography, leading to the isolation of six compounds (1-6), which were characterized as two proanthocyanidins, procyanidin B2 (1) and procyanidin B1 (2), and four phenolic compounds, 4-hydroxybenzoic acid ß-D-glucosyl ester (3), di-O-methylcrenatin (4), p-coumaric acid glucoside (5), and syringin (6) by the comparison of their NMR spectra with the reported data and high-resolution (HR)-electrospray ionization mass spectroscopy (ESI-MS) analysis. We investigated the potential of six compounds (1-6) to inhibit adipogenesis in 3T3-L1 preadipocytes, which showed that the compounds (1-6) significantly reduced lipid accumulation in 3T3-L1 adipocytes without affecting cell proliferation. Notably, compound 1 demonstrated a remarkable 60% and 90% reduction in lipid levels with 50 and 100 µM treatments, respectively. Oil Red O staining results indicated that compound 1 significantly inhibits the formation of lipid droplets, comparable to the effect of T863, an inhibitor of triglyceride used as a positive control, in adipocytes. Compound 1 had no effect on the regulators PPARγ, C/EBPα, and SREBF1 of adipocyte differentiation in 3T3-L1 preadipocytes, but compound 1 activated the fatty acid oxidation regulator, PPARα, compared to the lipogenic-induced control. It also suppressed fatty acid synthesis by downregulating the expression of fatty acid synthase (FAS). Finally, compound 1 induced the mRNA and protein levels of CPT1A, an initial marker of mitochondrial fatty acid oxidation in 3T3-L1. This finding substantiates the anti-lipogenic and lipolytic effects of procyanidin B2 (1) in 3T3-L1 preadipocytes, emphasizing its pivotal role in modulating obesity-related markers.


Subject(s)
Proanthocyanidins , Salix , Mice , Animals , 3T3-L1 Cells , Proanthocyanidins/pharmacology , Fatty Acids , Lipids
6.
Bioresour Technol ; 398: 130537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452955

ABSTRACT

Antioxidant addition is an effective strategy to achieve docosahexaenoic acid (DHA) overproduction in oleaginous microorganisms. Nevertheless, antioxidants like phenolic compounds sometimes exert pro-oxidant activity. In this work, effects of proanthocyanidins (PAs) on fermentation performance and oxidative stress in Schizochytrium sp. were investigated. Low PAs addition (5 mg/L) reduced reactive oxygen species and enhanced lipogenic enzymes activities and NADPH, resulting in significant increase in lipid (20.3 g/L) by 33.6 % and DHA yield (9.8 g/L) by 53.4 %. In contrast, high PAs addition (500 mg/L) exerted pro-oxidant effects, aggravated oxidative damage and lipid peroxidation, leading to sharp decrease in biomass (21.3 g/L) by 35.1 %, lipid (8.2 g/L) by 46.0 %, and DHA (2.9 g/L) by 54.8 %. Therefore, the antioxidant concentration is especially crucial in DHA production. This study is the first to report concentration-dependant dual roles of PAs in oxidative stress and DHA production in Schizochytrium sp., providing new insights into microbial DHA production.


Subject(s)
Proanthocyanidins , Stramenopiles , Antioxidants/metabolism , Docosahexaenoic Acids , Proanthocyanidins/pharmacology , Reactive Oxygen Species , Stramenopiles/metabolism , Oxidative Stress , Fermentation
7.
Food Chem ; 447: 139015, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38513492

ABSTRACT

The bioactive activity of proanthocyanidins (PAs) is closely associated with their degree of polymerization (DP), however, the effects of PAs with different DP on digestion and gut microbiota have remained unclear. To investigate this, we conducted in vitro simulated digestion and colonic fermentation studies on samples of PAs with different DP. The results showed that PAs was influenced by both protein precipitation and enzymolysis, resulting in a decrease in functional activity. PAs with a high DP were more sensitive to the gastrointestinal environment. The significant clustering trend in colonic fermentation verified the reliability of multivariate statistical techniques for screening samples with distinct functional differences. The gut microbiota analysis showed that oligomeric PAs had a stronger promoting effect on beneficial bacteria, while high polymeric PAs had a greater inhibitory effect on harmful bacteria. This study offers new insights into the biological activity and microbiological mechanisms of PAs with different DP.


Subject(s)
Gastrointestinal Microbiome , Proanthocyanidins , Humans , Proanthocyanidins/pharmacology , Proanthocyanidins/metabolism , Prebiotics , Fermentation , Polymerization , Reproducibility of Results , Digestion , Fatty Acids, Volatile
8.
Meat Sci ; 213: 109504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38555738

ABSTRACT

This study investigated how lipid metabolism in the longissimus thoracis is influenced by the diet supplemented with grape seed procyanidins (GSPs) in growing-finishing pigs. Forty-eight crossbred pigs were randomly assigned to four groups, each receiving a basal diet, or basal diet added with 150, 200, and 250 mg/kg GSPs. Transcriptomics and metabolomics were employed to explore differential gene and metabolite regulation. The expression of key lipid metabolism-related genes was tested via qRT-PCR, and the lipid and fatty acid composition of the longissimus thoracis were determined. Dietary GSPs at different concentrations upregulated lipoprotein lipase (LPL), which is involved in lipolysis, and significantly increased the mRNA expression levels of carnitine palmitoyltransferase-1B (CPT1B) and cluster of differentiation 36 (CD36), implicated in transmembrane transport of fatty acids. Dietary supplementation of GSPs at 200 or 250 mg/kg markedly reduced total cholesterol and triglyceride content in longissimus thoracis. Dietary GSPs significantly decreased the contents of low-density lipoprotein cholesterol and saturated fatty acids, while increasing unsaturated fatty acids. In conclusion, GSPs may regulate lipid metabolism, reducing cholesterol level, and improving fatty acid composition in the longissimus thoracis of growing-finishing pigs. Our findings provide evidence for the beneficial effects of GSPs as pig feed additives for improving lipid composition.


Subject(s)
Animal Feed , Fatty Acids , Grape Seed Extract , Lipid Metabolism , Metabolomics , Muscle, Skeletal , Proanthocyanidins , Animals , Proanthocyanidins/pharmacology , Lipid Metabolism/drug effects , Grape Seed Extract/pharmacology , Animal Feed/analysis , Muscle, Skeletal/metabolism , Fatty Acids/metabolism , Fatty Acids/analysis , Metabolomics/methods , Diet/veterinary , Sus scrofa , Male , Biflavonoids/pharmacology , Dietary Supplements , Transcriptome , Swine , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Triglycerides
9.
Int J Biol Macromol ; 263(Pt 1): 130611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447837

ABSTRACT

The increase of bacterial resistance to antibiotics is a growing concern worldwide and the search for new therapies could cost billions of dollars and countless lives. Inert surfaces are major sources of contamination due to easier adhesion and formation of bacterial biofilms, hindering the disinfection process. Therefore, the objective of this study was to develop a photoactivatable and anti-adhesive kappa-carrageenan coating using proanthocyanidin as a photosensitizer. The complete reduction (>5-log10 CFU/cm3) of culturable cells of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa pathogens was achieved after 30 min of exposure to visible light (420 nm; 30 mW/cm2) with 5 % (w/v) of the photosensitizer. Cell membrane damage was confirmed by measuring potassium leakage, epifluorescence microscopy and bacterial motility analysis. Overall, visible light irradiation on coated solid surfaces mediated by proanthocyanidin showed no cytotoxicity and inactivated clinically important pathogens through the generation of reactive oxygen species, inhibiting bacterial initial adhesion. The developed coating is a promising alternative for a wide range of applications related to surface disinfection and food biopreservation.


Subject(s)
Photosensitizing Agents , Proanthocyanidins , Carrageenan/pharmacology , Photosensitizing Agents/pharmacology , Proanthocyanidins/pharmacology , Light , Biofilms , Escherichia coli , Bacteria
10.
Parasit Vectors ; 17(1): 99, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429804

ABSTRACT

BACKGROUND: Soil-transmitted helminths (STH) infect more than a quarter of the world's human population. In the absence of vaccines for most animal and human gastrointestinal nematodes (GIN), treatment of infections primarily relies on anthelmintic drugs, while resistance is a growing threat. Therefore, there is a need to find alternatives to current anthelmintic drugs, especially those with novel modes of action. The present work aimed to study the composition and anthelmintic activity of Combretum mucronatum leaf extract (CMLE) by phytochemical analysis and larval migration inhibition assays, respectively. METHODS: Combretum mucronatum leaves were defatted with petroleum ether and the residue was extracted by ethanol/water (1/1) followed by freeze-drying. The proanthocyanidins and flavonoids were characterized by thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UPLC). To evaluate the inhibitory activity of this extract, larval migration assays with STH and GIN were performed. For this purpose, infective larvae of the helminths were, if necessary, exsheathed (Ancylostoma caninum, GIN) and incubated with different concentrations of CMLE. RESULTS: CMLE was found to be rich in flavonoids and proanthocyanidins; catechin and epicatechin were therefore quantified for standardization of the extract. Data indicate that CMLE had a significant effect on larval migration. The effect was dose-dependent and higher concentrations (1000 µg/mL) exerted significantly higher larvicidal effect (P < 0.001) compared with the negative control (1% dimethyl sulfoxide, DMSO) and lower concentrations (≤ 100 µg/ml). Infective larvae of Ascaris suum [half-maximal inhibitory concentration (IC50) = 5.5 µg/mL], Trichuris suis (IC50 = 7.4 µg/mL), and A. caninum (IC50 = 18.9 µg/mL) were more sensitive to CMLE than that of Toxocara canis (IC50 = 310.0 µg/mL), while infective larvae of Toxocara cati were largely unaffected (IC50 > 1000 µg/mL). Likewise, CMLE was active against most infective larvae of soil-transmitted ruminant GIN, except for Cooperia punctata. Trichostrongylus colubriformis was most sensitive to CMLE (IC50 = 2.1 µg/mL) followed by Cooperia oncophora (IC50 = 27.6 µg/mL), Ostertagia ostertagi (IC50 = 48.5 µg/mL), Trichostrongylus axei (IC50 = 54.7 µg/mL), Haemonchus contortus (IC50 = 145.6 µg/mL), and Cooperia curticei (IC50 = 156.6 µg/mL). CONCLUSIONS: These results indicate that CMLE exhibits promising anthelmintic properties against infective larvae of a large variety of soil-transmitted nematodes.


Subject(s)
Anthelmintics , Combretum , Helminths , Nematoda , Proanthocyanidins , Trichostrongyloidea , Animals , Humans , Combretum/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Larva , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anthelmintics/pharmacology , Ruminants , Flavonoids/pharmacology , Phytochemicals/pharmacology
11.
JCI Insight ; 9(6)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329812

ABSTRACT

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammation-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus, and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague-Dawley rats, with or without reflux induction, received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinis, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory, and immune-implicated proteins and genes, including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1b, Lbp, Lcn2, Myd88, Nfkb1, Tlr2, and Tlr4, aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe, promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation, and cellular damage.


Subject(s)
Adenocarcinoma , Bile Reflux , Esophageal Neoplasms , Gastroesophageal Reflux , Gastrointestinal Microbiome , Proanthocyanidins , Humans , Rats , Animals , Proanthocyanidins/pharmacology , Proanthocyanidins/therapeutic use , Proanthocyanidins/metabolism , Gastrointestinal Microbiome/physiology , Dysbiosis/drug therapy , Rats, Sprague-Dawley , Adenocarcinoma/genetics , Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/genetics , Inflammation/drug therapy , Metabolome
12.
Phytother Res ; 38(5): 2154-2164, 2024 May.
Article in English | MEDLINE | ID: mdl-38391003

ABSTRACT

Proanthocyanidins (PCs) are natural antioxidant polyphenols and their effect on the regulation of blood lipids is still controversial. This study was conducted to evaluate the effect of PCs on lipid metabolism. We searched PubMed, Embase, Web of Science, Chinese biomedical literature service system, China National Knowledge Internet, and Wanfang Data with no time restriction until March 18, 2022, using various forms of "proanthocyanidins" and "blood lipid" search terms. Randomized controlled trials investigating the relationship between PCs and lipid metabolism were included. The standard system of Cochrane Collaboration was used to assess the quality of studies. We standardized mean differences (SMDs) with 95% confidence interval (CI) using the random-effects model, Cohen approach. Seventeen studies (17 trials, N = 1138) fulfilled the eligibility criteria. PCs significantly reduced triglyceride, and increased recombinant apolipoprotein A1. Subgroup analysis showed a significant reduction in triglycerides in older adults (≥60 years) and total cholesterol for participants who were not overweight or obese (body mass index <24). An intervention duration of greater than 8 weeks reduced triglyceride and low-density lipoprotein cholesterol levels but increased high-density lipoprotein cholesterol. Different doses of PCs could regulate triglycerides, high-density lipoprotein cholesterol and total cholesterol. PCs have beneficial effects on circulating lipids and may represent a new approach for treating or preventing lipid metabolism disorders. However, more high-quality studies are needed to confirm these results.


Subject(s)
Proanthocyanidins , Triglycerides , Proanthocyanidins/pharmacology , Humans , Triglycerides/blood , Lipids/blood , Randomized Controlled Trials as Topic , Lipid Metabolism/drug effects , Cholesterol, LDL/blood , Cholesterol, HDL/blood , Apolipoprotein A-I/blood , Cholesterol/blood , Antioxidants/pharmacology
13.
Article in English | MEDLINE | ID: mdl-38366688

ABSTRACT

Procyanidins are gaining attention due to their potential health benefits. We found that cacao liquor procyanidin (CLPr) from Theobroma cacao seeds increased the lifespan of Caenorhabditis elegans, a representative model organism for aging studies. The genetic dependence of the lifespan-extending effect of CLPr was consistent with that of blueberry procyanidin, which is dependent on unc-43, osr-1, sek-1, and mev-1, but not on daf-16, sir-2.1, or skn-1. The lifespan-extending effect of CLPr was inhibited by neuron-specific RNA interference (RNAi) targeting unc-43 and pmk-1, and in worms with loss-of-function mutations in the odr-3, odr-1, or tax-4 genes, which are essential in sensory neurons, including AWC neurons. It was also inhibited in worms in which AWC neurons or AIB interneurons had been eliminated, and in worms with loss-of-function mutations in eat-4 or glr-1, which are responsible for glutamatergic synaptic transmission. These results suggest that the lifespan-extending effect of CLPr is dependent on the nervous system. In addition, it also requires unc-43 and pmk-1 expression in nonneuronal cells, as demonstrated by the experiments with RNAi in wild-type worms, the neuronal cells of which are not affected by systemic RNAi. The osr-1 gene is expressed in hypodermal and intestinal cells and regulates the response to osmotic stress along with unc-43/calcium/calmodulin-dependent protein kinase II and the p38 mitogen-activated protein kinase pathway. Consistent with this, CLPr improved osmotic stress tolerance in an unc-43- and pmk-1-dependent manner, and it was also dependent on AWC neurons. The lifespan-extending and osmotic-tolerance-improving activities were attributed to procyanidins with a tetrameric or higher-order oligomeric structure.


Subject(s)
Biflavonoids , Cacao , Caenorhabditis elegans Proteins , Catechin , Proanthocyanidins , Animals , Caenorhabditis elegans/physiology , Longevity/physiology , Proanthocyanidins/pharmacology , Proanthocyanidins/metabolism , Cacao/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Nervous System/metabolism
14.
J Agric Food Chem ; 72(8): 4023-4034, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38357881

ABSTRACT

In this study, an effective method for preparation of bioactive galloylated procyanidin B2-3'-O-gallate (B2-3'-G) was first developed by incomplete depolymerization of grape seed polymeric procyanidins (PPCs) using l-cysteine (Cys) in the presence of citric acid. The structure-activity relationship of B2-3'-G was further evaluated in vitro through establishing lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. The results suggested that the better protective effects of B2-3'-G against inflammation were attributed to its polymerization degree and the introduction of the galloyl group, compared to its four corresponding structural units. In vivo experiments demonstrated that the B2-3'-G prototype was distributed in plasma, small intestine, liver, lung, and brain. Remarkably, B2-3'-G was able to penetrate the blood-brain barrier and appeared to play an important role in improving brain health. Furthermore, a total of 18 metabolites were identified in tissues. Potential metabolic pathways, including reduction, methylation, hydration, desaturation, glucuronide conjugation, and sulfation, were suggested.


Subject(s)
Biflavonoids , Catechin , Proanthocyanidins , Humans , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Cysteine , Tissue Distribution , Biflavonoids/pharmacology , Biflavonoids/chemistry , Catechin/chemistry , Inflammation , Anti-Inflammatory Agents/pharmacology
15.
Molecules ; 29(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38338453

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid ß-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Proanthocyanidins , Probiotics , Synbiotics , Humans , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/etiology , Proanthocyanidins/pharmacology , Proanthocyanidins/therapeutic use , Liver , Probiotics/therapeutic use
16.
Biosci Biotechnol Biochem ; 88(4): 352-360, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38285609

ABSTRACT

Studies indicated that cocoa-based products effectively mitigate the risks associated with metabolic syndrome (MetS), however, the effect varies based on cocoa types, dosages, and study durations. This review aimed to determine the flavanol-rich cocoa consumption on MetS outcomes within the last decade (2013-2023), adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seven randomized-controlled trials (RCTs) used cocoa-based products containing 0.3-1680 mg flavanol monomers and 3.5-1270 mg procyanidins. Cocoa-based products beneficially reduced glycemic response, blood pressure and lipid profiles. However, this review highlights little evidence pinpointing the best cocoa products type and required dosage for the observed effects. Further intervention aiming to improve MetS should justify the selection and concentration of flavanols (monomers and procyanidins). A robust study design should consider registering the trials before study commencement, consider multicenter RCT trials, and adjust for potential covariates that might "masked" the outcomes.


Subject(s)
Cacao , Metabolic Syndrome , Proanthocyanidins , Humans , Proanthocyanidins/pharmacology , Polyphenols/pharmacology , Blood Pressure , Multicenter Studies as Topic
17.
J Biomol Struct Dyn ; 42(5): 2424-2436, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37144732

ABSTRACT

Prion diseases are a group of fatal neurodegenerative diseases caused by the misfolding and aggregation of prion protein (PrP), and the inhibition of PrP aggregation is one of the most effective therapeutic strategies. Proanthocyanidin B2 (PB2) and B3 (PB3), the effective natural antioxidants have been evaluated for the inhibition of amyloid-related protein aggregation. Since PrP has similar aggregation mechanism with other amyloid-related proteins, will PB2 and PB3 affect the aggregation of PrP? In this paper, experimental and molecular dynamics (MD) simulation methods were combined to investigate the influence of PB2 and PB3 on PrP aggregation. Thioflavin T assays showed PB2 and PB3 could inhibit PrP aggregation in a concentrate-dependent manner in vitro. To understand the underlying mechanism, we performed 400 ns all-atom MD simulations. The results suggested PB2 could stabilize the α2 C-terminus and the hydrophobic core of protein by stabilizing two important salt bridges R156-E196 and R156-D202, and consequently made global structure of protein more stable. Surprisingly, PB3 could not stabilize PrP, which may inhibit PrP aggregation through a different mechanism. Since dimerization is the first step of aggregation, will PB3 inhibit PrP aggregation by inhibiting the dimerization? To verify our assumption, we then explored the effect of PB3 on protein dimerization by performing 800 ns MD simulations. The results suggested PB3 could reduce the residue contacts and hydrogen bonds between two monomers, preventing dimerization process of PrP. The possible inhibition mechanism of PB2 and PB3 on PrP aggregation could provide useful information for drug development against prion diseases.Communicated by Ramaswamy H. Sarma.


Subject(s)
Prion Diseases , Prions , Proanthocyanidins , Humans , Molecular Dynamics Simulation , Proanthocyanidins/pharmacology , Prion Proteins/chemistry
18.
J Biomed Mater Res B Appl Biomater ; 112(1): e35333, 2024 01.
Article in English | MEDLINE | ID: mdl-37792302

ABSTRACT

Flavan-3-ol monomers are the building blocks of proanthocyanidins (PACs), natural compounds from plants shown to mediate specific biologic activities on dentin. While the stereochemistry of the terminal flavan-3-ols, catechin (C) versus epicatechin (EC), impacts the biomechanical properties of the dentin matrix treated with oligomeric PACs, structure-activity relationships driving this bioactivity remain elusive. To gain insights into the modulatory role of the terminal monomers, two highly congruent trimeric PACs from Pinus massoniana only differing in the stereochemistry of the terminal unit (Trimer-C vs. Trimer-EC) were prepared to evaluate their chemical characteristics as well as their effects on the viscoelasticity and biostability of biomodified dentin matrices via infrared spectroscopy and multi-scale dynamic mechanical analyses. The subtle alteration of C versus EC as terminal monomers lead to distinct immediate PAC-trimer biomodulation of the dentin matrix. Nano- and micro-dynamic mechanical analyses revealed that Trimer-EC increased the complex moduli (0.51 GPa) of dentin matrix more strongly than Trimer-C (0.26 GPa) at the nanoscale length (p < 0.001), whereas the reverse was found at the microscale length (p < .001). The damping capacity (tan δ) of dentin matrix decreased by 70% after PAC treatment at the nano-length scale, while increased values were found at the micro-length scale (~0.24) compared to the control (0.18 ; p < .001). An increase in amide band intensities and a decrease of complex moduli was observed after storage in simulated body fluid for both Trimer-C and Trimer-EC modified dentin. The stereochemical configuration of the terminal monomeric units, C and EC, did not impact the chemo-mechanical stability of dentin matrix.


Subject(s)
Catechin , Proanthocyanidins , Flavonoids/pharmacology , Flavonoids/analysis , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Proanthocyanidins/chemistry , Catechin/pharmacology , Dentin/chemistry
19.
Adv Healthc Mater ; 13(6): e2302690, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37885334

ABSTRACT

Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Proanthocyanidins , Zinc Oxide , Zinc/pharmacology , Zinc Oxide/pharmacology , Hydrogels/pharmacology , Antioxidants , Proanthocyanidins/pharmacology , Reactive Oxygen Species , Silver/pharmacology
20.
Biosci Biotechnol Biochem ; 88(4): 361-367, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-37930827

ABSTRACT

Long-term intake of procyanidins has been suggested to reduce the risk of cardiovascular disease, dementia, and sensory function decline associated with aging. However, most of the ingested procyanidins are not absorbed and are excreted in the feces, so the mechanism of their beneficial impact is unknown. Procyanidins are the components of astringency in plant foods and their stimulation appears to be directly transmitted to the central nervous system via sensory nerves. Recent attention has been focused on the taste receptors expressed in the extra-oral gastrointestinal tract may regulate homeostasis via the neuroendocrine system. In this paper, we have reviewed recent findings on the relationship between the astringency of procyanidins and their bioregulatory effects.


Subject(s)
Proanthocyanidins , Taste Buds , Proanthocyanidins/pharmacology , Astringents/pharmacology , Taste , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...